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BY 
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ABSTRACT 

Let T(t) be a semigroup on a subset of Banach space X. T(t) is generated by a 
product integral of the resolvent J~ of an accretive operator A. If X is a Hilbert 
space, it is known that for x in the domain of A, IIJ, x -  T(t)xll = o(t) as t 
decreases to zero. We show this is true when X is uniformly convex, and deduce 
some consequences. 

I. Introduction 

If a semigroup  T ( t )  on a subset  of a Banach space (X, II II) is genera ted ,  in the 

sense of Crandal l  and  Liggett [5], by an accretive opera to r  A, then the backward 

Euler  scheme 

x., + A A x .  ~ x . - , ,  x .  = x 

(1.1) or equivalent ly  

x , = J T x ,  J~ = ( I + A A ) '  

converges to T ( t ) x .  That  is to say J ] x  --~ T ( t ) x  as A ~ 0, nA ~ t. 

For  a ' local proof '  of convergence,  one  would require  at very least 

(1.2) tIJ, x - T ( t ) x  II = o ( t )  as t s 0. 

However ,  accret iveness is a global est imate,  and  the convergence  proof uses this 

fact. Indeed  the best that one  obta ins  from [5] is 

(1.3) IIJ, x - T ( t ) x  II <= gxt .  
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It is known that this is as much as one can expect in general Banach spaces. A 

best possible value for Kx is found later (Kx =(2/e)]Axl). Thus, bad local 

behaviour is globally smoothed. The situation is different in a Hilbert space: (1.2) 

holds. 

Accretiveness is a metric property, and [5] uses metric estimates. Before this, 

uniform convexity of the dual of X was commonly assumed. This was to ensure 

the duality map be sufficiently well behaved; [7, lemma 1.2], for example. The 

methods involved a somewhat curious mixture of topology and estimation. 

The main result we prove is that (1.2) holds if X is uniformly convex. The idea 

of the proof is geometrical. The beautiful triangle inequality of Clarkson is used 

to show the 'angle' between two vectors is small. This, together with the fact that 

the vectors have about the same length, is enough to show their difference is 

small. 

Incidental to the proof of the above, we obtain a characterization of the 

infinitesimal generator of the semigroup T(t). This generator, and its relation to 

the corresponding initial value problem, is investigated in the sequel. We obtain 

some modest improvements of those results of Miyadera in [10] which specifi- 

cally relate to uniformly convex spaces. The results themselves are somewhat 

predictable; our interest is more in the methodology employed in arriving at 

them. As already mentioned, the infinitesimal generator of T(t) is obtained 'for 

free'. Our procedure is to relate this generator to the given operator A, and to its 

canonical restriction. In contrast, [10] assumes conditions which ensure the 

canonical restriction is well behaved, and then shows it is the infinitesimal 

generator. 

QUESTION. The Crandall-Liggett paper gives the estimate 

IIJTx - T ( m A  )x l[---- O(A ,,2) 

as A ~. 0 and mA bounded. Can the exponent of A be increased in the case X is a 

Hilbert space? 

2. Preliminaries 

(X, I] I[) denotes a real Banach space. Its modulus of convexity 8 is defined by 

8 ( e ) =  inf{1 - I [a  + b 11/2: Ilall--Ilbll = 1, Ila - bll = E} 

for 0_-< e _--<2. X is uniformly convex if 8 ( e ) > 0  for e >0 .  It is shown in [6, 

corollary 5] that 8 is nondecreasing. Hence, if X is uniformly convex and 

6(e.)--->O, then e. -->0. 
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Following Clarkson [2], the generalized angle a(a ,  b) between two non-zero 

vectors a, b is defined by 

ija b I a(a ,  b) = al  I Ilbll " 

It is easily verified that 

(2.1) Ilia [la (a, b ) - I l a  - b III ~ Ilta II- lib II I. 

As a special case of Clarkson's triangle inequality [2, theorem 3] we have 

(2.2) II a + b II- {1 - 26(a(a  + b, a))} II a II + lib II 

whenever the right-hand side is defined. 

If l q C X  then T: [0 ,~)x  f~--*~ is a (co-)semigroup on ~ if (i) T(O)x = x, (ii) 

T(t + s)x = T(t)T(s)x, (iii) T(t)x is strongly t-continuous. If, in addition, T(t) 

is a contraction on f~ for each t, then T is a contraction semigroup. 

Following [4, definition 1.4], we have 

ix, y ]~ = (11 x + ,~y II- II x 11)/,~ $ Ix, y]~ as ,~ $ 0. 

A set valued operator A C X x X is accretive if 

(2.3) [x-y ,x ' -y ']§  x ' E A x ,  y ' E  Ay. 

If the backward Euler scheme (1.1) is to exist for x ~ D(A  ) = {x : Ax ~ Q}, we 

must have the range condition 

(2.4) R (I + AA ) D D (A) 

for sufficiently small A >0 .  The Crandall-Liggett theorem then asserts (1.1) 

converges to a contraction semigroup T(t) on the closure of D(A).  (The 

extension from D ( A )  to its closure is by continuity.) With these assumptions, if 

x E D ( A )  and t decreases to zero 

(2.5) 

(2.6) 

For z ' E A z ,  s < t  

IIx -J,  xll/t t IAxl=<inf(llY I1: Y EAx}, 

Ilx - T( t )x  lilt < lAx  I. 

L 
t 

(2.7) IIz - T ( t ) x l l - I I z  - T(s)xll<= [z - T(r)x,z ']+dr.  

The first result is elementary and defines lAx I. Both (2.5) and (2.6) are taken 
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from [3], or [11]. (2.7) is the condition that T(t)x  is an integral solution [1] of 

x'  + Ax  ~ O. Sketch proof: 

Since A is accretive and (J] -~x-  J]x)/A ~ Ajax,  

[z - J~x, z ' -  (J~-'x - J~x)/,x]~ >= o. 

This rearranges to become 

II z - J~x [I - I1 z - J~-'x II ---- '~ [z - J~-'x, z % 

Summing k = m + 1 , . . . ,  n, and making a change of variables 

[ I z - J : x l l - l l z - J = x l [ < - _  , [ z - J  t'"'~ x . z ' l , d ,  

([r/A] denotes the integer part of r/A). 

Now let A ,1, 0, nA ---* t, mA ~ s, and take limsup on both sides. Apply Fatou's 

Lemma to the integral, and note that limsup of the integrand is majorized by 

[z - T(r)x,  z']~ for any e > 0. Apply monotone convergence as e l, 0. 

An equivalent, and more convenient, differential version of (2.7) is 

(2.8) Ollz  - Z(s)xll<=[z - T(s)x,z']+, z ' E A z .  

Here D denotes any one of the four Dini derivatives with respect to s. The 

substitutions z = J~x, z'  = (x - J~x)/h lead to a number of interesting estimates. 

We mention only two. 

O l I J ~ x  - Z(s )x  II--< [J~x - T(s)x .  (x - J~x)/~ l~ 

= ~- {11 x - Z ( s ) x  II - II J~x - Z ( s ) x  II} 

_-< 1{2[1x - Z(s )x  II- IIx - J~x II}. 

The first inequality integrates to give 

( 2 . 9 )  IIJ~x - r ( t ) x l l < = e - " " l l x  - J ,  x l l + - ;  , e"-"/~[Ox - T(s)x[ [ds .  

The second 

( 2 . 1 0 )  IIJ, x - r ( t ) x l [ ~ = ( 1 - r  - J ~ x l l + ~ -  , IIx - r ( s ) x l l a s .  

Set A = t and use (2.6) to estimate the integrals. Then, [[J ,x-  r ( t )x  lilt is 
majorized by (2 /e) lAx[ in  (2.9), and by lAx  l in (2.10). Later we give an example 

where the constant 2/e is attained. 
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If X is a Hilbert space it is natural to work with the square of the norm. Note 

that (x, y) = IIx II [x, y]+. With the same substitutions for z and z ', (2.8) becomes 

2 
DIIJ~x - T ( s ) x  II 2 _-__ -s - T(s)x ,  x - J~x) 

-- l{ l lx  - Z(s )x  I t - I I / , x  - T(s )x  II 2 -  Itx - J~x 112}. 
A 

This differential inequality integrates to give 

(2 .11)  IlJ~x - r ( t ) x l l 2 < - ( 2 e  - ' "  - 1)llx - / ~ x  112+~ - , e ~ S - ' " ~ l l x  - T ( s ) x l l 2 a s .  

Estimating as before 

IlZx - Z( t ) x  II/t <= (1 - 2/e)'/2{IAx 12- (llx - Zx 11/02} ''2 

= o ( 1 )  a s t  $ 0. 

Estimate (2.10) has been used in interpolation theory [11]. On the other hand, 

the stronger (2.9) may be new. It, together with (2.11), was discovered by the 

author using a quite different argument involving the Poisson convergence 

theorem for Bernoulli trials. 

3. Uniformly convex spaces 

We have seen that (2.9) and (2.10) do not directly give the 'little oh' estimate 

(1.2). If (1.2) does hold, one would roughly expect the function F ( t ) =  

IIJ, x - T ( t ) x  II to  decrease with speed r A x  l w h e n  0 < t ~ X ~ 1. The derivatives 

of the right-hand sides of (2.9) and (2.10) with respect to t are both equal to 

-IIx - J~x II/,~ ~ - t A x  [ at t = 0. Thus (2.9), (2.10) are consistent with (1.2) for 

t ,~ A. It was this observation which led to the technique that follows. 

We assume A is an accretive operator  satisfying the range condition (2.4), and 

T( t )  the semigroup it generates. 

THEOREM 1. If X is uniformly convex and x E D ( A  ) then 

IIJ, x - T ( t ) x  II = o(t )  as t & o. 

Theorem 1 follows from 

THEOREM 2. I f  X is uniformly convex and x E D ( A  ), the limits as t ~, 0 of 

(x - J , x ) / t  and (x - T ( t ) x ) / t  both exist and are equal. 
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PROOF. Since the norms of the above expressions both converge to l A x  I, it 

suffices to assume J A x l g  O. The proof is in two parts. 

Step 1. The first limit exists. 

For 0 < s < t, let a~., denote a (x - Jsx, x - J,x). By the triangle inequality (2.2) 

IIx - J,x II--- {1 - 2 ~  (a~ , , ) } l lx  - J~x II + IIJ, x - Zx  II. 

Using the resolvent identity [5, lemma 1.2] on the last term 

"J'x - Jsx ll = ll J~(~ x + t - S j ' x )  - Jsx I t  

The triangle inequality then rearranges to become 

(3.1) 2 ~ ( ~ , ) l l x  - J~x II/ s <= IIx - J~x ir/ s - l l x  - z x  II/ t. 

Hence 
i imsup 2t3(cts., )l A x  I<= r A x  I - I  A x  I = 0 

where the limsup is taken as t ~ 0, 0 < s < t. Consequently ct~., ~ O. 

Now set a = ( x -  J,x)/t, b = ( x - J ~ x ) / s  in (2.1). It follows that 

II (x - J,x)/t  - (x - •x ) / s  II--' 0 as  t ~, 0 ,  0 < s < t, 

so, by completeness, ( x -  J,x)/t  converges. 

Step 2. We show 

II(x - J , x ) / t - ( x  - T ( s )x ) / s l l - - ,O  as t ,s/t-->O. 

This proves existence of the second limit and its equality with the first. In view of 

(2.1) it suffices to show a~., = a ( x  - T ( s ) x , x  - J , x ) ~ O  as t and s / t  decrease to 

zero. 

Using the triangle inequality (2.2) 

IIx - J,x II--< f l  - 2~  (,~s.,)HIx - T ( s ) x  II + IIJ, x - T ( s ) x  It. 

The last term is estimated by (2.10). ((2.9) would do equally well.) 

I[J,x - Z ( s ) x  II---- (1 - s/ t) l lx - 1,x II + (s=/t) l a x  I. 

The triangle inequality then rearranges to become 

2 ~ ( , ~ s . , ) l l x  - T ( s ) x  II/s <--IIx - Z ( s ) x  II/s - I Ix  - Zx II/t + ( s / t ) l A x  I. 

Take limits, and the proof is complete. 
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REMARK. A similar argument to that used in Step 1 would show (x - T( t )x) / t  
is convergent as t ~ 0. This is proved in [10, theorem 3] under the additional 

assumptions that A is maximal accretive and its canonical restriction is single 

valued. (Maximality is not a problem, since A may be replaced by a maximal 

extension.) If this result is assumed, Step 1 is redundant. 

A similar method to the above gives results on left ditierentiability of T(t)x. 
An additional complication is that IAT( t ) x l  may not be left continuous. (It is 

right continuous and nonincreasing.) 

THEOREM 3. If  X is uniformly convex, T ( t ) x E D ( A )  for t = t o > 0  and 

I A T ( t ) x l  is continuous at t,,, then T( t )x  is strongly differentiable at t,,. 

PROOF. Let 0 < t <  to and or,., = a(J~T(to)X- T(t)x, T( to)X-  T(t)x) .  By the 

triangle inequality (2.2) 

IlJ~T(t.)x - T( t)x  [l- IIJ, T(t,,)x - T(to)X II--< {1 - 2a (,~.,)}11T(t,,)x - T( t )x  II. 

To estimate the left-hand side, set z = J,T(to)X, z ' =  (T( to)X-  J~T(to)X)/A in 

(2.8) and estimate in the same way as (2.10) was obtained. 

D II Jr T(to)X - T(s)x  II = �88 {211(t,,)x - Z(s)x II - tl a~ T(to)X - T(to)X II}. 

Integrate from t to to. 

IIJ~T(to)X - T(to)x II-U~T(t, ,)x - T( t)x  II 

= < 2 _ f , , ,  t , , -  t 
r(to)X - r(s)x lids - w l l  J .r ( t , , )x  - r(to)X II. 

A J, A 

Hence 

(3.2) 

2a (,~.,)11T(to)X - r(t)x Ill(to- t)_<-II T(to)X - T(t)x Ill(to- t) 

- l I J ~ T ( t o ) X  - T ( to )X lllx + 

Now, if t - < S < t o  

2 r(to)X T( s )x  Ilas. A(to_t)f'"ll 

II T(to + t o -  s )x - T(to)X Ill(to- s)  ~ II T(to)X - Tfs  )x Ill(to- s)  

(3.3) < I A T ( t ) x  I. 

As t 1' to, both sides converge to ]AT(to)X I. If I AT( to)Xl= 0 the theorem is 

proved. In any case the right-hand side of (3.2) converges to zero as A $ 0 and 

( to-  t)/A -->0. Hence, if t A T ( t o ) x l r  O, a~., ~ 0 .  
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Set a = (J~T(t,,)x - T(t)x)/h,  b = (T(to)X - T( t )x) / ( to-  t) in (2.1), and let 

h ,[ 0, ( t , , - t ) /h  ~ 0 .  Note that 

= ~S-(T( to)X  - T(t)x) /( t , , -  t)+ (J~T(to)x - T(to)X)/h a 

d + 
0 + -d-[ T(to)x 

by (3.3) and Theorem 2. Also II a II and IIb II both converge to I aT(to)x [. Hence 

[ -~t T(t,,)x - (T(t,,)x - T( t )x) / ( to-  t)[ --~O 

as t 1' to. Thus, T(t)x  has a left derivative, which equals its right derivative. 
In order to characterize the infinitesimal generator of T(t), we need to extend 

definition (2.5) of [Axl t o  the closure of D ( A ) .  A more than adequate 

assumption to achieve this is 

(3.4) R ( I  + h A ) D  D ( A  ) 

for sufficiently small h >0 .  This is the range condition assumed in [5]. The 

generalized semigroup domain 

/ ) ( A ) =  {x ~ D(A) :  [Ax l<oo} 

has the pleasing property of being forward flow-invariant for the semigroup 
T(t). Also (2.6) holds for x E / ) ( A ) .  All the above statements are proved in 

both [3] and [11]. We observe that the proofs of Theorems 1, 2 and 3 remain 

unchanged if D (A)  is replaced b y / )  (A) in their statements. In particular, for 

x E / ) ( A ) ,  denote the common limit in Theorem 2 by A*x. 

THEOREM 4. Let X be uni[ormly convex, (3.4) hold, and A*x  denote the limit 

in Theorem 2. Then 

(1) A * : / ) ( A ) - - ~ X ,  A* single valued. 
(2) A t.J A* is accretive. 

(3) II A*x II -- I A x  t. 
(4) - A *  is the strong infinitesimal generator of T(t). 
(5) A*T( t ) x  is right continuous/or x ~ 19(A ). 

(6) I[ t AT(t)x[ is le/t continuous at t = to > 0 then A* T(t)  is continuous at to 

and 

d 
(3.5) -~ T( t )x  + A* T( t )x  = 0 at t = to. 
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PROOF. The proofs of (1), (2), (3) are routine, and are omitted. 

If x ~ / ) ( A )  then IIx - T ( t ) x  tl/t is unbounded as t decreases to zero, so x is 

not in the domain of the infinitesimal generator of T(t) .  On the other hand, if 

x E / ) ( A ) ,  then (T ( t ) x  - x) / t  --~ - A*x.  
To prove (5) we first require a lemma, which, in a certain sense, says that 

(x - J~x)/A converges uniformly to A*x.  

LEMMA 5. For e > 0 there exists 6 > 0 such that if x E I~ (A  ), l A x  I ~ 0 then 

1 -  
A ] a x l  II 

PROOF. From (2.1) we have 

II m * x  - ( x  - J~x ) /~  II --- l A x  [a ( A ' x ,  x - JAg) + l a x  ] - tl x - J~x II/,~ 

�9 <= l A x  I {c~(A*x, x - L x ) +  6}. 

Set t = A and let s decrease to zero in (3.1) to get 2 6 ( a ( A * x , x  -Lx ) )<= 6. 

Hence, by choosing 6 sufficiently small, we make a ( A ' x ,  x - J~x ) ,  and also the 

right-hand side of the above inequality, as small as we please. The Lemma is 

proved. 

PROOF OF (5). Let x E 1 9 ( A ) .  If ] A x l = 0  then A * T ( s ) x  =0 ,  so we may 

assume l A x  J > O. 

Choose e > 0. Then choose the 6 in Lemma 5. Finally choose r > 0 such that 

I A T ( s ) x I > ( 1 - 6 ) I A x l  fo r0=<s=<r .  Let 

U~ : {sU[0,~-]:I-IIT(s)x-J~T(s)xHAIAx [ < 6 } .  

Then, as A decreases to zero, { U~ } is a nondecreasing family of open subsets of 

[0,~-]. Moreover,  the expression in the definition of U~ converges to 1 -  

IAT(s)xl/IAx[<& {u~} is an open covering of [0, r] ,  so for some A > 0 ,  

U~ = [0, ~-]. With this choice of A 

1 -II T(s )x  - J~T(s)x II < 6. 
A I A T ( s ) x  [ 

By Lemma 5, f o r 0 = < s = < r  

][ A *  T ( s ) x  - (T ( s ) x  - J~ T ( s ) x  )/A ]l <= e I m T(s  )x I <- e I mx  1. 
Thus 

H A* T(s  )x - J * x  II <= It (T ( s ) x  - J~T(s)x )/A - (x - J~x )/A H + 2e j A x  [. 
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Let s decrease to zero, and take the limit superior. The first term on the right 

vanishes, the second is as small as we please. This proves (5). 

PROO~ OF (6). From Theorem 3 we already know that T(t)x  is differentiable 

at to, so (3.5) holds by part (4). The proof that A * T(t)x  is left continuous is much 

the same as that for right continuity, and goes as follows. 

We may assume IAT( to)x lgO,  since otherwise IJA*T(s)x II---,0 as s ~ to. 

Having chosen e and ~ as above, we choose ~" < to  such that I A T ( s ) x l >  

(1 - ~ ) I A T O ) x t  for r <= s <= t,~, and let 

{ _[[T(s)x-JAT(s)x[[  } 
U~ = sE[~',t0]: 1 A I A T ( z ) x  I < 8  . 

Exactly as before, we deduce 

[ IA*T(s ) -  (T(s)x  - J~T(s)x)/A II --< e l A T ( z ) x  t 

for some A > 0 and ~" _-< s _-< to. Hence, as s l' to, 

limsup {I A *  T ( s ) x - A * T ( to )x II <- 2e I A T ( r ) x  I. 

The proof of Theorem 4 is complete. 

If Theorem 4 is compared with [10, theorem 3] it will be seen that A* plays the 

rOle commonly reserved for the canonical restriction A ~  of A. 

A"x  = {y ~ Ax:  IIY II-- inf{lJz [l: z ~ ax}}.  

A ~ is awkward to work with for the following reasons. (i) A ~ can be 

multivalued. (ii) D(A" )  may be a proper subset of D ( A ) ,  even empty. (iii) 

D( A" )  need not be flow-invariant for the semigroup T(t). The first difficulty is 

avoided if X and X* are strictly convex and A is maximal accretive on D ( A ) .  If, 

in addition, X is reflexive then D(A~ = D ( A ) .  [8, lemma 3.10]. To ensure 

D ( A )  is flow-invariant we need / ) ( A ) =  D ( A ) .  This will be the case if A is 

maximal accretive on D ( A )  or, more generally, if A is almost demiclosed (i.e. 

x, ~ x, y, E Ax,,  y, weakly convergent implies x ~ D ( A  )). [3, theorem 2]. 

None of these assumptions requires that X be uniformly convex. However,  if X 

is uniformly convex, we obtain simple criteria. 

THEOREM 5. Let X be uniformly convex and the range condition (2.4) hold. 
Then, if A is closed, A* C A"  C A and, in particular, D (A ") = D (A ) = f )  (A ). If, 
in addition, X*  is strictly convex then A* = A ~ 
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PROOF. Since A is closed, the range condition (3.4) holds, and A* is defined 

on / ) (A) .  The logic goes: A closed ~ I + A A  closed :::> J~ closed => D ( J , )  

closed, since Jx continuous. 
Let x E Ig(A) .  Then ( x - J A x ) / h  E AJ,  x. Let h decrease to zero. The left- 

hand side converges to A*x. Using the fact that J~x--->x and A is closed, 

A*x  ~ Ax. By Theorem 4 (3) and (2.5) 

II A * x II = I A x  i <~ inf {11Y I1: Y E A x  }. 

The infimum being achieved by A ' x ,  A*x  E A~ This proves the first part. 

Now assume X* is strictly convex. Let ,4 be a maximal accretive extension of 

A on D ( A ) .  By [8, lemma 3.10], ,6 ~ is defined and single valued on D ( A ) .  Let 

y E A~ We show y = A*x. We have 

[I Y I[ = 11A*x II = lAx  [ = l a x  I <- II A ~ x II. 

Taken in the order shown, the proofs are: (i) A*x E A"x.  (ii) Theorem 4 (3). (iii) 

lAx  [ and lax I are defined by the same resolvent operator (or semigroup). (iv) 

(2.5). Now y E fi.x. Therefore y = fi.~ Since A*x E A'~x, y = A*x as required. 

REMARK. It is known that if small order perturbations are allowed in (1.1), 

then the Nagumo type range condition 

(3.6) l iminf d (R (I + hA) ,  x)/h = 0, h / 0, x E D ( A )  

is sufficient to ensure (1.1) converges to a contraction semigroup. See [9] and the 

references therein. Range condition (3.4) was assumed in order to obtain the 

generalized semigroup domain. A modified procedure using (3.6) shows 

fix - T( t )x  lilt and lix - J , x .  [[/t. converge to the same limit, lAx  1, when t ,1, 0, 
t, ~, 0, x, ~ D(J,.)  and fix - x, II/t,--~O. When x ~ D ( A ) ,  the existence of such a 

sequence {t., x,} is guaranteed by (3.6). Because Jr, need no longer be defined on 

D ( A ) ,  Theorems 1 and 2 require restatement. The additional complication of 

extra perturbation terms somewhat obscures the essential arguments contained 

in the proof of Theorem 2. However,  the following is easily proved by the 

previous method. 

THEOREM 6. Let A be accretive and satisfy range condition (3.6). Let X be 

uniformly convex and x E D ( A  ). Then 

( x - T ( t ) x ) / t  and ( x - J , x . ) / t ,  

converge to the same limit as t ~ 0, and {t,,x,} is any sequence such that t, ~ 0, 

x. ~ D (I,.) and II x - x .  II/t. ---' 0 .  
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4. Example 

The following example is designed to show the constant (2/e)lAx I is best 
possible value for Kx in (1.3). 

Take X = C ( [ - 1 , 0 I )  , D ( A ) = { , ~ : ~ , , b ' E X ,  6 ' ( 0 ) = I } ,  A4~= - 6 ' .  It is 
shown in [12] that A is densely defined, m-accretive and that 

J'~b(s)= eS"(O(O)+ t + l f"e-' / '~b(r)dr)  JS 

Taking ~b (s) = - s, 

J,O(s) = 2te "/' - s - t. 

Hence [l t~ - J,6 II = t, so lAG[ = 1. 
Now, since T( t )~  generates 'segments' of the solution of x ' =  1, x ( 0 ) =  0, 

T ( t ) 6 ( s ) =  Is + t I. Then for 0 < t  =< 1 

IIz , - T ( t ) 6  II => I J , 6 ( -  t ) -  T ( t ) t p ( -  t)l = 2t /e  = (2/e)[ mo  It. 

The reverse inequality was proved in the paragraph following (2.10). To 

conclude, we note that T(t)~b E D ( A )  if, and only if, t = 0 or t => 1. 

REFERENCES 

1. Ph. Benilan, ~tuations d'~volution darts un espace de Banach quelconque et applications, 
Thesis, .U. Paris X1, Orsay, 1972. 

2. J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414. 
3. M. G. Crandall, A generalized domain for semigroup generators, Proc. Amer. Math. Soc. 37 

(1973), 434-440. 
4. M. G. Crandall and L. C. Evans, On the relation of the operator d/as + d/a,r to evolution 

governed by accretive operators, Israel J. Math. 21 (1975), 261-278. 
5. M. G. Crandall and T. M. Liggett, Generation of semigroups of nonlinear transformations on 

general Banach spaces, Amer. J. Math. 93 (1971), 265-293. 
6. T. Figiel, On the moduli of convexity and smoothness, Studia Math. 56 (1976), 121-155. 
7. T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 

508--520. 
8. T. Kato, Accretive operators and nonlinear evolution equations in Banach spaces, Proc. Symp. 

Pure Math. 18, Part I, Amer. Math. Soc., Providence R.I., 1970, pp. 138-161. 
9. Y. Kobayashi, Difference approximation of Cauchy problems [or quasi-dissipative operators 

and generation of nonlinear semigroups, J. Math. Soc. Japan 27 (1975), 640-665. 
10. I. Miyadera, Some remarks on semi-groups of nonlinear operators, T6hoku Math. J. 23 

(1971), 245-258. 
11. A. T. Plant, Flow-invariant domains of Hiilder continuity for nonlinear semigroups, Proc. 

Amer. Math. Soc. 53 (1975), 83-87. 
12. G. F. Webb, Asymptotic stability for abstract nonlinear [unctional differential equations, Proc. 

Amer. Math. Soc. 54 (1976), 225-230. 

DEPARTMENT OF MATHEMATICS 
UNIVERSITY OF GLASGOW 

GLASGOW GI2 8QW, SCOTLAND, U.K. 


